Transparent SNARKs from DARK Compilers

Transparent SNARKs from DARK Compilers

Cryptape's photo
Cryptape
·May 14, 2022·

2 min read

Subscribe to our newsletter and never miss any upcoming articles

Supersonic: Transparent SNARKs from DARK Compilers explained by Benedikt Bünz at Ethereum Devcon 5 Conference

Another talk by Alan Szepieniec at Eurocrypt 2020


Abstract

We construct a new polynomial commitment scheme for univariate and multivariate polynomials over finite fields, with logarithmic size evaluation proofs and verification time, measured in the number of coefficients of the polynomial. The underlying technique is a Diophantine Argument of Knowledge (DARK), leveraging integer representations of polynomials and groups of unknown order. Security is shown from the strong RSA and the adaptive root assumptions. Moreover, the scheme does not require a trusted setup if instantiated with class groups. We apply this new cryptographic compiler to a restricted class of algebraic linear IOPs, which we call Polynomial IOPs, to obtain doubly-efficient public-coin interactive arguments of knowledge for any NP relation with succinct communication. With linear preprocessing, the online verifier’s work is logarithmic in the circuit complexity of the relation. There are many existing examples of Polynomial IOPs (PIOPs) dating back to the first PCP (BFLS, STOC’91).

We present a generic compilation of any PIOP using our DARK polynomial commitment scheme. In particular, compiling the PIOP from PLONK (GWC, ePrint’19), an improvement on Sonic (MBKM, CCS’19), yields a public-coin interactive argument with quasi-linear preprocessing, quasi-linear (online) prover time, logarithmic communication, and logarithmic (online) verification time in the circuit size. Applying Fiat-Shamir results in a SNARK, which we call Supersonic. Supersonic is also concretely efficient with 10KB proofs and under 100ms verification time for circuits with 1 million gates (estimated for 120-bit security). Most importantly, this SNARK is transparent: it does not require a trusted setup. We obtain zk-SNARKs by applying a hiding variant of our polynomial commitment scheme with zero-knowledge evaluations. Supersonic is the first complete zk-SNARK system that has both a practical prover time as well as asymptotically logarithmic proof size and verification time.

Full text

eprint.iacr.org/2019/1229.pdf

Authors

Benedikt Bünz , Ben Fisch , Alan Szepieniec

Contributed to

Eurocrypt 2020 (The 39th Annual International Conference on the Theory and Applications of Cryptographic Techniques), April 2020

Key words

cryptography, SNARK, zero-knowledge


By the same author:


You may also be interested in:

 
Share this